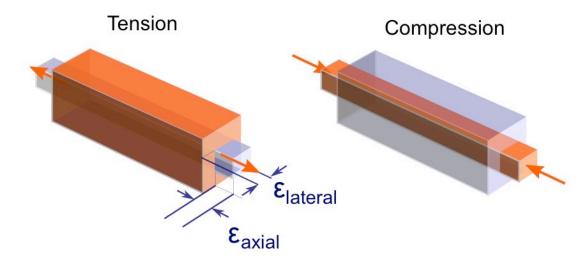


3D response to **1D** strain

The Poisson effect

- In chapter 2 we've discussed how loads introduce stress and strain in the the direction that the load acts (1D problems)
- In reality, a strain in one direction (axial strain) also induces strains in the two perpendicular directions (lateral strain)



$\varepsilon_{lateral} = -\nu \cdot \varepsilon_{axial}$

$$\nu := \left| \frac{\varepsilon_{lateral}}{\varepsilon_{axial}} \right| = \text{Poisson ratio}$$

$$G = \frac{E}{2(1+\nu)}$$

3D response to 1D strain The Poisson effect

The lateral strain can be described using the *Poisson equation*.

 ν is a materials property and is on the order of 0.25-0.35 for most materials (0.1-0.5)

IMPORTANT: The Poisson effect does NOT cause any additional stress in the material, unless the transverse displacement is prevented

For Hookean materials, the Poisson ratio relates the *elastic modulus E* and the *shear modulus G*.

3

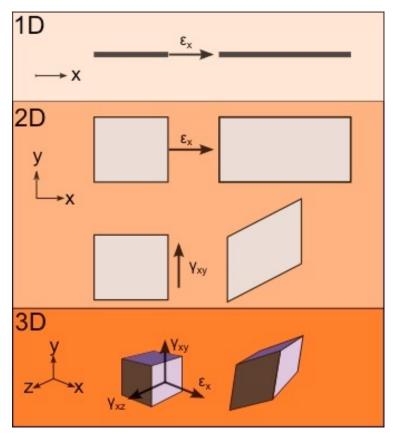
ME-231B / STRUCTURAL MECHANICS FOR SV

"Where did

g.d. Chiarro

"Where did you get yor chiropractic license?"

The Strain Tensor



The strain tensor

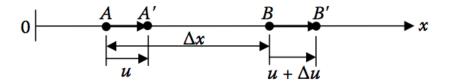
In real world problems, we need to keep track of normal strains ϵ and shear strains γ in multiple directions

On each face of a (virtual) cube, we can have one normal strain and two shear strains

For 3 dimensions (3 faces) this results in 3 normal strains and 6 shear strains

The 9 strains can be conveniently combined into the strain tensor

REMEMBER: Strain is a local property and can change dramatically in the material. That's why we need a definition of the 3D strain based on an infinitesimal element.



$$\varepsilon = \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = \frac{du}{dx}$$

Review:

The strain tensor

Infinitesimal definition of strain

- Like in the 1D case, we derive the definition of strain from the stretching of a segment AB with the original length of Δx that is part of a larger line.
- u is the "rigid body motion" and Δu is the stretching of the element Δx

 The three normal components of the strain are then:

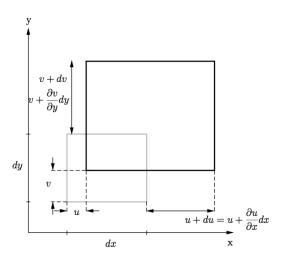
$$\varepsilon_x = \varepsilon_{xx} = \frac{\partial u}{\partial x}$$
 $\varepsilon_y = \varepsilon_{yy} = \frac{\partial v}{\partial y}$
 $\varepsilon_z = \varepsilon_{zz} = \frac{\partial w}{\partial z}$

- The 3 normal changes show the change in shape of the parallelepiped with initial volume dxdydz.
- The normalized volume change is the sum of the normalized strains

$$\frac{\Delta V}{V} = \varepsilon_x + \varepsilon_y + \varepsilon_z$$

The strain tensor

Definition of *normal* strain in 3 dimensions



$$\varepsilon_x = \varepsilon_{xx} = \frac{\partial u}{\partial x}$$
 $\varepsilon_y = \varepsilon_{yy} = \frac{\partial v}{\partial y}$
 $\varepsilon_z = \varepsilon_{zz} = \frac{\partial w}{\partial z}$

$$\frac{\Delta V}{V} = \varepsilon_x + \varepsilon_y + \varepsilon_z$$

Deriving the strain tensor

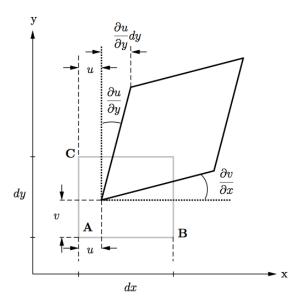
Definition of normal strain in 3 dimensions

 Analog to the 1D case we can define the 3 normal components of the strain.

- The 3 normal changes show the change in shape of the parallelepiped with initial volume dxdydz.
- The normalized volume change is the sum of the normalized strains

The strain tensor

Definition of shear strain in 3 dimensions



- The slopes of initially horizontal line is
- The slopes of initially vertical line is

- $\frac{\partial v}{\partial x}$ $\frac{\partial u}{\partial y}$
- Therefore the change in the previously right angle, which is the shear strain is:

$$\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

 From symmetry and extrapolation into the third dimension we learn that:

$$\gamma_{xy} = \gamma_{yx} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

$$\gamma_{xz} = \gamma_{zx} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}$$

$$\gamma_{yz} = \gamma_{zy} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}$$

The strain tensor

Nomenclature

- The shear components of the strain tensor are DEFINED to be ½ of the engineering strain.
- THIS IS AN ENDLESS SOURCE OF CONFUSION!

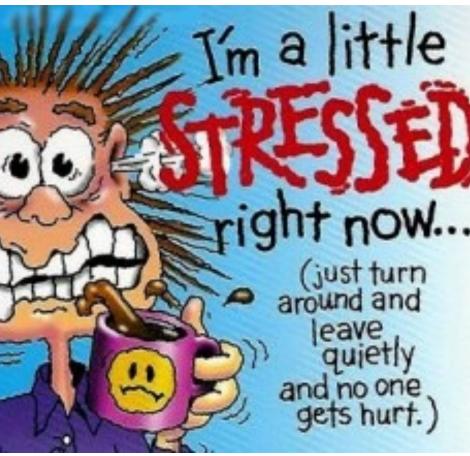
The strain tensor

Nomenclature

- We can write the 9 components of the strain as a second order tensor (for each strain we have a direction, a magnitude and relative to which plane our stress is quantified).
- Example: ε_{xx} represents the magnitude of deformation in the x direction, relative to a reference length in the x direction.
- To make the strain tensor behave mathematically like a proper tensor, the shear components of the strain tensor are defined as HALF the engineering strain.

$$\varepsilon_{kl} = \frac{1}{2}(u_{l,k} + u_{k,l}) = \frac{1}{2}\left(\frac{\partial u_l}{\partial x_k} + \frac{\partial u_k}{\partial x_l}\right)$$

 This equation defines 6 independent components of a symmetric, second order tensor (x_i∈ {x,y,z}, u_i∈ {u,v,w})



The Stress Tensor

The stress tensor

Nomenclature

- We can write the individual components of the stress state also in tensor form
- The <u>first sub script</u> denotes the normal <u>vector of the area</u> in question, and the <u>second subscript</u> denotes the <u>direction of the force component</u> that acts on the area

$$\sigma_{yx} = \lim_{\Delta A_y \to 0} \frac{\Delta F_x}{\Delta A_y} \quad \sigma_{yy} = \lim_{\Delta A_y \to 0} \frac{\Delta F_y}{\Delta A_y}$$

• The stress vector equation can then be written as:

$$\vec{\sigma}_x = \sigma_{xx} \cdot \vec{e}_x + \sigma_{xy} \cdot \vec{e}_y + \sigma_{xz} \cdot \vec{e}_z$$

$$\vec{\sigma}_y = \sigma_{yx} \cdot \vec{e}_x + \sigma_{yy} \cdot \vec{e}_y + \sigma_{yz} \cdot \vec{e}_z$$

$$\vec{\sigma}_z = \sigma_{zx} \cdot \vec{e}_x + \sigma_{zy} \cdot \vec{e}_y + \sigma_{zz} \cdot \vec{e}_z$$

.

The stress tensor

Intensity of forces on internal surfaces

- Stress is the intensity of internal forces (<u>F</u>/<u>A</u>) on (virtual) surfaces within a body subject to loads <u>P</u>. (<u>F</u>, <u>A</u>, and <u>P</u> are vectors)
- We can therefore define the stress vector $\underline{\sigma}_n$ as:

$$\vec{\sigma_n} = \lim_{\Delta A_n \to 0} \frac{\Delta \vec{F}}{\Delta A_n}$$

In Cartesian coordinates:

$$\vec{\sigma_n} = \lim_{\Delta A_n \to 0} \frac{\Delta F_x \vec{e_x} + \Delta F_y \vec{e_y} + \Delta F_z \vec{e_z}}{\Delta A_n}$$

 For surfaces perpendicular to the x,y or z axis:

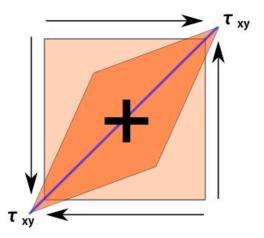
$$\vec{\sigma_x} = \lim_{\Delta A_x \to 0} \frac{\Delta F_x \vec{e_x} + \Delta F_y \vec{e_y} + \Delta F_z \vec{e_z}}{\Delta A_x}$$

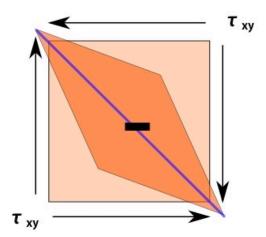
$$\vec{\sigma_y} = \lim_{\Delta A_y \to 0} \frac{\Delta F_x \vec{e_x} + \Delta F_y \vec{e_y} + \Delta F_z \vec{e_z}}{\Delta A_y}$$

$$\vec{\sigma_z} = \lim_{\Delta A_z \to 0} \frac{\Delta F_x \vec{e_x} + \Delta F_y \vec{e_y} + \Delta F_z \vec{e_z}}{\Delta A_z}$$

The stress tensor – sign convention

- Normal stress: normal stress is considered positive if it puts an element in tension, and negative if it puts an element in compression
- Shear stress:





The stress tensor

Nomenclature

• The 9 stress components can be again combined to a tensor:

$$\stackrel{\longleftarrow}{ au} = egin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} = egin{pmatrix} \sigma_{xx} & au_{xy} & au_{xz} \ au_{yx} & \sigma_{y} & au_{yz} \ au_{zx} & au_{zy} & \sigma_{z} \end{pmatrix}$$

- σ_i are normal stresses, τ_{ii} are shear stresses
- The stress tensor is symmetric: $au_{xy} = au_{yx}$
- Both stress and strain tensor are 2nd order tensors and can be diagonalized to give the *principal values* (extreme values of stress and strain)

The stress tensor

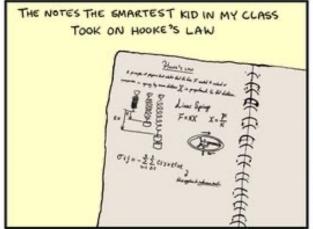
Final remarks

If we pass three mutually orthogonal planes through any given point O and find the stress vectors on each of the three mutually perpendicular faces drawn through O, then we have fully characterized the stress at point O

Due to the symmetry of the stress tensor, we only need 6 stress values to fully describe the stress state

Stress represents the intensity of internal forces on surfaces within a body subject to loads. At an imaginary cut or section, a vector sum of these forces keeps the body in equilibrium

WHY I FAILED PHYSICS - REASON # 74: HOOKE'S LAW



Hooke's Law in 3D

DRIVINGWITHOUTGLASSES, COM

Hooke's Law in 3D

• In the 1D case, Hooke's law has the form:

$$\sigma = E \cdot \varepsilon$$

$$\tau = G \cdot \gamma$$

 In 3D we do the same thing, but with ε,γ,σ,τ replaced by the second order tensors ε and τ:

- Or in index notation: $\tau_{ij} = C_{ijkl} \cdot \varepsilon_{kl}$
- C_{ijkl} is called the <u>stiffness</u>, C_{ijkl}-1 is called the <u>compliance</u>
- A tensor of rank 4 in 3D space has 3x3x3x3=81 elements!

Simplification of the stiffness matrix

Mathematically general form	81 independent components	
Take into account the symmetry of $\tau and \; \epsilon$	36 independent components	
symmetry due to the existence of strain energy U_0	21 independent components	General case for anisotropc elasticity
isotropic case: C _{ijkl} is invariant to coordinate rotation	2 independent components	Case for isotropic materials (materials that have same E and G in all directions)

Full form for isotropic homogeneous materials

Because of the symmetry we can simplify:

$$\begin{pmatrix} \varepsilon_x & \frac{1}{2}\gamma_{xy} & \frac{1}{2}\gamma_{xz} \\ \frac{1}{2}\gamma_{xy} & \varepsilon_y & \frac{1}{2}\gamma_{yz} \\ \frac{1}{2}\gamma_{xz} & \frac{1}{2}\gamma_{yz} & \varepsilon_z \end{pmatrix} = \stackrel{\Leftrightarrow}{C}^{-1} \begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{pmatrix}$$

• We rearrange the non redundant components:

$$\begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{pmatrix} = \begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ 2\varepsilon_{xy} \\ 2\varepsilon_{xz} \\ 2\varepsilon_{yz} \end{pmatrix} = \begin{pmatrix} \text{some 6x6 marix} \\ \text{some 6x6 marix} \\ \cdot \begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{xy} \\ \tau_{xz} \\ \tau yz \end{pmatrix}$$

 These are no longer the stress or strain tensors! They are just a simpler way to write Hooke's law in 3D.

.

For isotropic cases

 For homogeneous isotropic materials we can write Hooke's law for the normal stresses and for the shear stresses as:

$$\varepsilon_{x} = \varepsilon_{xx} = \frac{1}{E}(\sigma_{x} - \nu \cdot \sigma_{y} - \nu \cdot \sigma_{z}) \qquad \gamma_{xy} = \frac{\tau_{xy}}{G}$$

$$\varepsilon_{y} = \varepsilon_{yy} = \frac{1}{E}(-\nu \cdot \sigma_{x} + \sigma_{y} - \nu \cdot \sigma_{z}) \qquad \gamma_{xz} = \frac{\tau_{xz}}{G}$$

$$\varepsilon_{z} = \varepsilon_{zz} = \frac{1}{E}(-\nu \cdot \sigma_{x} - \nu \cdot \sigma_{y} + \sigma_{z}) \qquad \gamma_{yz} = \frac{\tau_{yz}}{G}$$

 Since E and G are related through v, there are only 2 independent materials properties in these equations.

$$G = \frac{E}{2(1+\nu)}$$

.

Full form for isotropic homogeneous materials

$$\begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \\ \gamma_{xz} \\ \gamma_{yz} \end{pmatrix} = \frac{1}{E} \begin{pmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+\nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+\nu) \end{pmatrix} \cdot \begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{xz} \\ \tau yz \end{pmatrix}$$

Volume changes

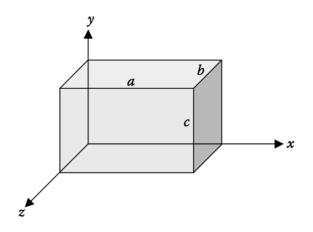
 From the definition of the infinitesimal strains, we can calculate the change in volume to be

$$\frac{\Delta V}{V} = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$$

$$= \frac{1 - 2\nu}{E} (\sigma_{xx} + \sigma_{yy} + \sigma_{zz})$$

$$= \frac{1}{K} (\sigma_{xx} + \sigma_{yy} + \sigma_{zz})$$

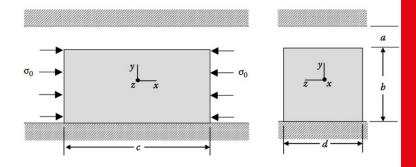
 K is the bulk modulus of the material. It can be calculated from the two independent materials variables E and v



Example 3.1

Triaxial loading

A rectangular copper alloy block as shown in the figure has the following dimensions: a = 200 mm, b = 120 mm, and c = 100 mm. This block is subjected to a triaxial loading in equilibrium having the following magnitude: $\sigma x = +2.40$ MPa, $\sigma y = -1.20$ MPa, and $\sigma z = -2.0$ MPa. Assuming that the applied forces are uniformly distributed on the respective faces, determine the size changes that take place along a, b, and c. Let E = 140 GPa and v = 0.35.



Example 3.2

A rectangular block is compressed by a uniform stress σ_0 as it sits between two rigid surfaces with the gap a shown in Figure 3.14. Determine (a) the stress σ_{yy} ; (b) the change in the length along the x axis as the gap a is closed; and (c) the minimum value of σ_0 need to close the gap and the change in length of c when the gap is just closed. Assume σ_{77} =0