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¥ N Strain and stress
in higher
| dimensions
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=PrL 3D response to 1D strain

The Poisson effect

= |n chapter 2 we've discussed how loads introduce stress and strain in the the
direction that the load acts (1D problems)

= |n reality, a strain in one direction (axial strain) also induces strains in the two
perpendicular directions (/ateral strain)

Tension Compression
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3D response to 1D strain
The Poisson effect

— The lateral strain can be described
Elateral — —V * Eaxial using the

vis a materials property and is on
the order of 0.25-0.35 for most
materials (0.1-0.5)

The Poisson effect
does NOT cause any additional
o E stress in the material, unless the
= m transverse displacement is prevented

Elateral . .
= Poisson ratio

vV =

Eaxial

For Hookean materials, the Poisson
ratio relates the elastic modulus E
and the shear modulus G.
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“Where did you get yor chiropractic license?”

The
Strain
Tensor

£y

Georg Fantner



The strain tensor

In real world problems, we need to keep
track of normal strains € and shear strains y
in multiple directions

On each face of a (virtual) cube, we can
have one normal strain and two shear

strains

For 3 dimensions (3 faces) this results in 3
normal strains and 6 shear strains

The 9 strains can be conveniently combined
into the strain tensor

Strain is a local t%ropert and

can change dramatically in the material.
That's why we need a

based on an
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Review:
T e = =Sl The strain tensor
Infinitesimal definition of strain
U+ Au
Like in the 1D case, we derive the
A q definition of strain from the stretching of a
c— lim =% _ 4t segment AB with the original length of Ax
Az—0 Az dx that is part of a larger line.

u is the “rigid body motion” and Au is the
stretching of the element Ax
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= The three normal components of the
strain are then:
_ Ou
Exx = % :
=2 The strain tensor
_ Ow

€2z = 5 Definition of normal strain in 3

dimensions

= The 3 normal changes show the
change in shape of the parallelepiped
with initial volume dxdydz.

= The normalized volume change is the
sum of the normalized strains

N
Vv

=€rté&ytes
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Deriving the strain tensor

b+ Oy Definition of normal strain in 3
dimensions

dy v

Analog to the 1D case we can

Mol define the 3 normal components of
N x the strain.
ou
E€x = Exx = %
Ey = Eyy = % The 3 normal changes show the
ay change in shape of the
e, = £, =2 parallelepiped with initial volume
0z dxdydz.
AV L. The normalized volume change is
% YT the sum of the normalized strains




=PFL  The strain tensor

Definition of shear strain in 3 dimensions

Y ou, = The slopes of initially horizontal line is ov
)

i e = The slopes of initially vertical line is Oz

—l g : au

ou R

= Therefore the change in the previously right angle,

o 0
which is the shear strain is:

Ov ov JOu
dy| 4. | oz Toy = o + oy
Al B
oy - i = From symmetry and extrapolation into the third
i i « dimension we learn that;
dz
ov  Ou
Yoy = Ty = % + 8_3/
L w o
Yoz =Yee T 52 T B2
ow Ov
Yyz = Y2y = a_y + 5




=PFL  The strain tensor

Nomenclature

1 1
PN Exx Exy Exz Exx §’7:1cy ?W:ch
_ — |1 1 —
€ = | Cyz Eyy Eyz | = %’Vfcy fyy 2Vyz | =
Erx Ez2y Ezz 5Yzz 3Vyz €zz

= The shear components of the strain tensor are DEFINED to
be 72 of the engineering strain.

= THIS IS AN ENDLESS SOURCE OF CONFUSION!

1(0v | du 1 (0w a_u\
( Caa 2 (8x+8y) 2(8:10 +8z)
1 ov ou 1 { Ow ov
< 5(%+a—y> Eyy §<a—y+%)
1 (Oow ou 1 { Ow ov
> (52 + 52) 2 (a—y+ 82) 22
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The strain tensor

Nomenclature

= We can write the 9 components of the strain as a second order tensor (for
each strain we have a direction, a magnitude and relative to which plane our
stress is quantified).

= Example: g,, represents the magnitude of deformation in the x direction,
relative to a reference length in the x direction.

= To make the strain tensor behave mathematically like a proper tensor, the
shear components of the strain tensor are defined as HALF the engineering

strain.
1 1 [/ 0y oug
o= g+ ) = 3 (G + )

= This equation defines 6 independent components of a symmetric, second
order tensor (x€ {x,y,z}, ui€ {u,v,w})

11



The
. Stress
4 Tensor
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=PFL  The stress tensor

Nomenclature

= We can write the individual components of the stress state also in tensor form

= The first sub script denotes the normal vector of the area in question, and the
second subscript denotes the direction of the force component that acts on

the area
AF, , AFy
— lim

Oyr = lim o
YT AA,—0 AA, o aA, -0 AA,

= The stress vector equation can then be written as:

O-x:O-xx'ex—i_O-my'ey—i_o'xz'ez
Uzzazx'€x+0zy'ey+0zz'ez
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The stress tensor )

Intensity of forces on internal surfaces

= Stress is the intensity of internal forces (F/A) on (virtual)
surfaces within a body subject to loads P. (E, A, and P are

vectors)
= We can therefore define the stress vector g, as.
R . AF
o, = lim

AA,—0 AA,
= |n Cartesian coordinates:
AF,e; + AFy e, + AF.e;

0, = lim
B Adn L ARG+ AFE + AF.E
. o, = lim
= For surfaces perpendicular AAL—0 AA,
to the x,y or z axis: & = lim AFe; + AFye, + AFe;

AA,—0 AA,
AF,e; + AF, e, + AF, e,
AA. 0 AA,




=FL The stress tensor - sign convention

= Normal stress: normal stress is considered positive if it puts an element in
tension, and negative if it puts an element in compression

» Shear stress:

15
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=PFL  The stress tensor

Nomenclature

= The 9 stress components can be again combined to a tensor:

o Oxx Oxy Ogxz Ox Txy Txz
Ozx Ozy Ozz Tze Tzy Oz

= 0; are normal stresses, T; are shear stresses

= The stress tensor is symmetric: Tuy = Ty

= Both stress and strain tensor are 2" order tensors and can be diagonalized to
give the principal values (extreme values of stress and strain)



EPFL  The stress tensor g

Final remarks

find the stress vectors on each of the three mutually perpendicular faces

75‘ If we pass three mutually orthogonal planes through any given point O and
drawn through O, then we have fully characterized the stress at point O

Due to the symmetry of the stress tensor, we only need 6 stress values to fully
describe the stress state

Stress represents the intensity of internal forces on surfaces within a body
C o subject to loads. At an imaginary cut or section, a vector sum of these forces
“ keeps the body in equilibrium

B 19.10.22
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WHY | FAILED PuysicS - Reason # T4 & HOOKE’S LAW

THE NOTES THE SMARTEST KID IN MY CLASS

THE NOTES THAT | “ToOK ON HOOKE?S LAY
TookK ON HOOKE®S LAW

Hooke’s Law
in3D

DRVINGWITHOUT GLASSES, CoM
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Hooke’s Lawin 3D

= |n the 1D case, Hooke’s law has the form: oc=F- ¢
T=G- v

= [n 3D we do the same thing, but with €,y,0,T replaced by the
second order tensors € and T1:

=
T =C %
Ox Txy Txz o 1€x %'V:vy %f)/xz
Tyz Oy Tyz | =C ?%sy 151/ 2 Vyz
Tzx Tzy Oz 5Vxz  5Vyz €z
= Or in index notation: Tij = Cijki - €kl

= Cjj is called the stiffness, Cyy " is called the compliance

= Atensor of rank 4 in 3D space has 3x3x3x3=81 elements!

19



=PFL  Generalized Hooke’s law

Simplification of the stiffness matrix

Mathematically general form

81 independent components

Take into account the symmetry of
Tand €

symmetry due to the existence of
strain energy Uy

isotropic case: Cyy is invariant to
coordinate rotation

36 independent components

21 independent components

2 independent components

General case for anisotropc
elasticity

Case for isotropic materials
(materials that have same E and G
in all directions)

20



=PFL  Generalized Hooke’s law

Full form for isotropic homogeneous materials

= Because of the symmetry we can simplify:

1 1
15x 5 Vzy ?'sz -1 [ Oz Tzy Tz
?’ny 151/ 3Vyz | =C Tyz Oy  Tyz
5Vxz  3Vyz €z Tzx (o

= We rearrange the non redundant components:

( iy\ ( ; \ \ ([ Zz\
e | €, some 6x6 marix | o
Yoy 2E 1y
,}/QZ‘Z 28.’1)2

) o)\ )\

= These are no longer the stress or strain tensors! They are just a simpler way
to write Hooke’s law in 3D.




=PFL  Generalized Hooke’s law "

For isotropic cases

= For homogeneous isotropic materials we can write Hooke’s law for the normal
stresses and for the shear stresses as:

1

G
Ey =€ —l(—y-a +o,—v-0,) Taz
Yy =yy — E x Y z Vez =
1 T,
_ _ _ Yz
E:z —_ (Szz —_ E(_V * O-x - V * O-y —l_ O-z> F}/yz —_—

= Since E and G are related through v, there are only 2 independent materials
properties in these equations.

E
2(1+v)

G =



=PFL  Generalized Hooke’s law

Full form for isotropic homogeneous materials

E & 1 — — o 0
(Ey \ (—V 1V —Z 0) 0)
Ex 1 ot 2t 1 0 0
Yoy | E | O 0 0 2(1+v) 0
Vo 0 0 0 0 2(1 +
\ V- / \ 0 0 0 0 0

23
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=PFL  Generalized Hooke’s law

Volume changes

= From the definition of the infinitesimal strains, we can calculate the change in
volume to be

AV
7 = Egz T Eyy + €2z
1—-2v
s E (O'xm—l—ayy—l—O'ZZ)
1
= ?(Gxx—l—dyy—l—O'zz)

» K is the bulk modulus of the material. It can be calculated from the two
independent materials variables E and v
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Example 3.1

Triaxial loading

A rectangular copper alloy block as
shown in the figure has the following
dimensions: a = 200 mm, b = 120 mm,
and ¢ = 100 mm. This block is subjected
to a triaxial loading in equilibrium having
the following magnitude: ox = +2.40
MPa, oy =-1.20 MPa, and oz = -2.0
MPa. Assuming that the applied forces
are uniformly distributed on the
respective faces, determine the size
changes that take place along a, b, and
c. Let E=140 GPa and v = 0.35.
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Example 3.2

743

77 Z
%7

AN

> <«
o —» yl_ «— 9%
z x .
= -« A rectangular block is compressed by a
= uniform stress g, as it sits between two rigid

)

7 7 2

7 7 Z 2 A

surfaces with the gap a shown in Figure
3.14. Determine (a) the stress og,,, (b) the
change in the length along the x axis as the
gap a is closed; and (c) the minimum value
of 0, need to close the gap and the change
in length of ¢ when the gap is just closed.
Assume 0,,=0

< c |
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